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All the different TIPSGs (holohedries of the TI 
crystal families) have been studied with the same 
method and the results are listed in Table 8. There- 
fore, it is possible to establish a correspondance 
between our approach for defining the TI crystal 
families and their holohedries (see the left side of 
Table 8) in space E 6 and the approach of Janner et 
al. (1983) (see the right side of Table 8). 

Concluding remarks 
As a conclusion of this first paper concerning the TI 
crystals structures, we compare and list the numbers 
and types of PSOs that describe the mono-, di- or 
tri-incommensurate structures (Table 9). In the next 
paper, we compare the MI, DI and TI PSGs and 
crystal families; we explain all the symbols of the 
PSGs given in Table 6. 
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Abstract 
The previous paper in this series [Phan & Veysseyre 
(1994). Acta Cryst. A50, 438-444] mainly compared 
the mono-, di- and tri-incommensurate point- 
symmetry operations, their number and their sym- 
bols. In this paper, the filiation from the gZ- 
irreducible crystal families of the one-, two- and 
three-dimensional spaces to the mono-, di- and tri- 
incommensurate families of the four-, five- and six- 
dimensional spaces is established. The holohedries 
and the different point groups of these crystal fami- 
lies are compared. The paper begins with a list of the 
incommensurate families; then a series of nine 
further tables establishes the connection between the 
different families and their point groups. It is proved 
that there are 30 mono-incommensurate (MI) point 
groups, 47 di-incommensurate (DI) point groups and 
57 tri-incommensurate (TI) point groups belonging 
to the six MI crystal families of four-dimensional 
space, to the 11 DI crystal families of five- 

© 1994 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

dimensional space and to the 14 TI crystal families of 
the six-dimensional space. 

Introduction 
In previous papers, we have studied the mono- 
incommensurate (MI) crystal families (Veysseyre & 
Weigel, 1989), the di-incommensurate (DI) crystal 
families (Phan, Veysseyre & Weigel, 1991), the tri- 
incommensurate (TI) crystal families (Phan & Veyss- 
eyre, 1994) and the incommensurate point operations 
- mainly their number and their symbols. We recall 
that the mono-, di- and tri-incommensurate phases 
of physical space are not crystals in this space. 
However, they can be considered as sections of crys- 
tals of four-, five- or six-dimensional spaces through 
physical space. Therefore, in this paper, we call a MI 
family a crystal family in the four-dimensional (4D) 
space, a DI family a crystal family in five- 
dimensional (5D) space and a TI family a crystal 
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family in the six-dimensional (6D) space if these 
crystal families describe the incommensurate struc- 
tures. 

In Table 1, we list the MI, DI and TI families. By 
means of the geometrical names that we suggest for 
these families, the connection between them can 
easily be seen. The choice of names recalls both these 
relations and the construction of the crystal cells. 
For instance, the hexaclinic family of 4D space is a 
MI family, whereas the hexaclinic-al family of 5D 
space is a DI family and the hexaclinic oblic family 
of 6D space is a TI family. As we shall explain here, 
the cell of the hexaclinic-al family is a right hyper- 
prism based on the hexaclinic cell. The cell of the 
hexaclinic oblic family is the rectangular product of 
the hexaclinic cell and of the parallelogram (oblic) 
cell. We recall that 'oblic' means parallelogram; the 
crystal family 'oblic-al' is generally called 'mono- 
clinic'. Moreover, 'hexagonal' must only be used in 
three-dimensional (3D) space; 'hexagon' is used in 
two-dimensional (2D) space. 

Table 1 shows how powerful are the names that 
we suggest for the crystal families, either the incom- 
mensurate or the non-incommensurate ones. Their 
properties are explained in the following sections. 
Then, in Tables 2-9, we compare the different point 
groups that describe the incommensurate crystal 
structures, classified family by family according to 
their geometrical construction. Finally, in Table 10, 
we summarize their number. 

I. Filiation and geometrical isomorphism 

We establish and prove a filiation and a geometrical 
isomorphism between the gZ-irreducible crystal fami- 
lies of one-dimensional space (1 D) (segment), of 2D 
space (oblic, square, hexagon) and of 3D space 
(triclinic, cubic) and the gZ-reducible MI, DI and TI 
crystal families of the 4, 5 and 6D spaces. 

The definition and the properties of the gZ- 
irreducible (gZ-irr.) crystal families and of the gZ- 
reducible (gZ-red.) crystal families are given by 
Weigel & Veysseyre (1991) and are recalled in the 
Appendix. 

In a series of eight tables (Tables 2-9), we describe 
this filiation and this isomorphism, which actually 
appear in the WPV names of the families as well as 
in the WPV symbols of the holohedries of these 
families. The WPV (Weigel, Phan & Veysseyre) sym- 
bols are explained in some papers, for instance 
Weigel, Phan & Veysseyre (1987). The last table 
(Table 10) summarizes the number of incommen- 
surate crystal families and point groups. 

Tables 2, 3 and 4 are, respectively, devoted to the 
incommensurate crystal families connected to the 
triclinic, oblic and segment crystal families, which are 
gZ-irr, crystal families. Tables 5 and 6 are devoted to 

Table 1. Incommensurate crystal families 

'al' means 'right hyperprism based on ' 'orthogonal'  is not 
written between two names of  cells belonging to two orthogonal 
subspaces. 

6 MI families 
(4D) 

Hexaclinic 
Triclinic-al 

Di oblic 
Oblic rectangle 
Oblic square 
Oblic hexagon 

11 DI families 14 TI Families 
(5D) (6D) 

15-clinic 
Decaclinic Decaclinic-al 
Hexaclinic-al Hexaclinic oblic 
Triclinic oblic Triclinic oblic-ai 

Di triclinic 
Di oblic-al Tri oblic 
Triclinic rectangle Hexaclinic rectangle 
Triclinic square Hexaclinic square 
Triclinic hexagon Hexaclinic hexagon 
Diclinic di square-al Diclinic di square 

oblic 
Diclinic di hexagon-al Diclinic di hexagon 

oblic 
Monoclinic di Monoclinic di square 

square-al oblic 
Monoclinic di Monoclinic di 

hexagon-al hexagon oblic 
Monoclinic di cubic 

the incommensurate crystal families connected to the 
gZ-irr, square crystal family. Then, Tables 7 and 8 
are devoted to the incommensurate crystal families 
connected to the gZ-irr, hexagon crystal family and, 
lastly, Table 9 is devoted to the incommensurate 
crystal families connected to the gZ-irr, cubic crys- 
tal family. As these tables are similar, it will be 
enough if we explain a series of them, for instance, 
the crystal families obtained from the square family 
of 2D space. 

Therefore, in Table 5, we start with the square 
crystal family whose cell is a square; 4ram is the 
symbol of its holohedry of order 8. The following 
crystal families are constructed out of this family: 

The tetragonalfamily in 3D space: its cell is a right 
prism based on a square; 4ram Z m or 4/mmm is the 
symbol of its holohedry of order 1 6 (8 × 2) and there 
exist six proper subgroups or point groups in this 
family, which are: 4ram; 422; 742m; m ± 4; 4; 74. This 
family is a gZ-red, crystal family. 

The oblic square family in 4D space: its cell is the 
rectangular product of a parallelogram (oblic) and 
a square belonging to two orthogonal subspaces; 
4ram± 2 is the symbol of its holohedry of order 16 
(8 × 2) and six point groups belong to this family as 
in the tetragonal family. We can compare the sym- 
bols of the point groups of the oblic square family 
and of the tetragonal family. Some of these are the 
same as 4ram or 4, for instance. Others are different 
but these differences have a geometrical explanation. 
For instance, the point-symmetry operation (PSO) m 
is changed into 2, then 4ram ± m becomes 4ram ± 2, 
4 ± m  becomes 4 z 2 .  The PSO 2 is changed into 1, 
thus 422 becomes 4, 1, 1. Actually, m is a PSO of 1D 
space, and 2 is a PSO of 2D space, whereas T is a 
PSO of 3D space. Another example is the PSO 74, 
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Table 2. MI, DI and TI crystal families and point groups from the gZ-irreducible and degenerate triclinic, 
hexaclinic, decaclinic and 15-clinic crystal families 

In the first column,  we give the general name (gZ-irr.  or  incommensura te)  o f  the crystal family as well as the dimension o f  the space. 
gZ-irr,  means  'geometrically Z-irreducible '  (Z  is the set o f  positive and negative integers). The  gZ-irr,  crystal families are underlined. The  
subsequent  columns give the H e r m a n n - M a u g u i n  and WP V  s y~nbols o f  the point  groups.  The  last co lumn gives the number  p o f  
incommensura te  point  groups  listed in the table. We can write: ls = 1. 

Order of the 
point groups 

gZ-irr. CF 
(3D) 

MI CF (4D) 

DI CF (SD) 

TI CF (6D) 

2 1 4 2 4 2 2 p 

Triclinic 1 1 

Triclinic-al 1.1. m 1 1 Hexaclinic 14 4 

Trielinic 
oblic* ~ _1. 2 1 1 Hexaclinic-al 1"-: .L m 14 Decaclinic ls 6 

Di triclinic 1 .L 1 1 1 Hexaclinic oblic* 14-1- 2 14 Decaclinic-al 1~.1. m ls 15-clinic 16 8 

* These two families also appear  in Table  3; the other  PSGs  belonging to these families are listed in Table  3. 

Table 3. MI, DI and TI crystal families and point groups from the gZ-irreducible oblic crystal family of 2D 
space 

See capt ion o f  Table  2. 

Order of the 
point groups 8 4 4 2 8 4 4 4 p 

gZ CF (2D) Oblic 2 
(parallelogram) 

CF (3D) Monoclinic 2.1_ m 2 
(oblic-al) (2/m) 

MI CF (4D) Di oblic 2 .L 2 2 2 

DI CF (5D) Triclinic oblic* 2 Di oblic-al 2.1.2.1.m 2_Lm 2_L2 14, 1,I 6 

TI CF (6D) Triclinic oblic-al 1 ± 2_1. m ~.1. 2 Hexaclinic oblic* 2 Tri oblic 2 _L 2 ± 2 2_L 2 14, 14 9 
~.Lm 
2.I.m 

* These two crystal families also appear  in Table  2; in this table, we only list the PSGs 2 that  are not  listed in Table  2. 

Table 4. MI, DI and TI crystal families and point groups from the gZ-irreducible segment crystal family of 1D 
space 

See capt ion o f  Table  2. 

Order of the point groups 8 4 4 4 2 p 
gZ-irr. CF (1D) Segment m 

CF (2D) Rectangle m _1_ m m 
(2 mm) 

_ _  

MI CF (4D) Oblic rectangle 2.1. m .1. m m .1. m 2 _L m 2,1,1 m 5 

DI CF (5D) Triclinic rectangle 1.1. rn .1_ m m _L m T .1. m 2,14,14 m 5 

TI CF (6D) Hexaclinic rectangle 14 _1. m _L m m .1. m 14 _L m 2,1 s, 1 s rn 5 

Table 5. MI, DI and TI crystal families and point groups from the gZ-irreducible crystal square family of 2D 
space 

The  first line gives the order  o f  the PSGs. The  remaining lines give the PSGs belonging to the families, the first PSG being the ho lohedry  
in each case. Actually,  13 = 2, 13 -- 1, 15 = 1; it is easy to see that  ~ = 154 = 134; indeed, 15 = 12 and 4 '2 = 43 ( rota t ion o f  3~-/4). 

Order of the point groups 16 8 8 8 8 4 4 p 

Square gZ-irr. CF (2D) 4mm 4 

Tetragonal 3D m _L 4mm 4mm 422 ~I2m m .1. 4 4 71 
(4/ram) 

Oblic square 2 ± 4mm 4mm 4,T,'f 24,T,m 2 ± 4 4 24 7 
MI family (4D) 

Triclinic square T ± 4mm 4mm 4 , ~ , ~  14,14,m T ± 4 4 14 7 
DI family (5D) (~[,1,,m) (~) 

Hexaclinic square 14 _1_ 4mm 4mm 4,1 s, 1 s 14,1 s,m 14 _L 4 4 144 7 
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Table 6. DI and TI crystal families and point groups 
from the gZ-irr, diclinic di square and monoclinic di 

square crystal families of  4D space 

p = number  o f  incommensura te  (I) point  groups.  

Order 1 6 8 4 p 
Non-incommensurate 44* 

gZ-irr. CF diclinic di 
square (4D) 

DI CF diclinic di square-al 44* .1. m 44* 2 
(5D) 

TI CF diclinic di square 44* _1. 2 44* 2 
oblic (6D) 

Non-incommensurate 2,44*,2 
gZ-irr. CF monoclinic 
di square (4D) 

DI CF monoclinic di 2,44*,2 _1_ m 2,44",2 2 
square-al (5D) 

TI CF monoclinic di 2,44",2_1_ 2 2,44",2 2 
square oblic (6D) 

which becomes 24. We recall that 24 is the symbol of 
a double rotation, i.e. the commutative product of 
two rotations that take place in two orthogonal 
planes, a rotation through the angle 2~-/2 and a 
rotation through the angle 27r/4. 

The triclinic square family in 5D space: its cell is 
the orthogonal product of a triclinic cell (oblic paral- 
lelepiped cell) and a square cell belonging to two 
orthogonal subspaces of three and two dimensions, 
respectively, T_I_ 4mm is the symbol of its holohedry 
of order 16 and six point groups belong to this 
family, as in the oblic square family. As previously, 
we can compare these symbols and the symbols of 
the point group of the previous two families. For 
instance, the PSO T in 3D space is changed into 14 in 
4D space and 14 into 15 in 5D space. 

The hexaclinic square family in 6D space: its cell is 
the rectangular product of a hexaclinic cell (oblic 
parallelotope cell) and a square cell belonging to two 
orthogonal su__bspaces of four and two dimensions, 
r e s p e c t i v e l y ;  14 -1 -4mm is the symbol of its holohedry 
of order 16. Six point-symmetry groups (PSGs) 
belong to this family, they are listed in Table 5. 

Then, in Table 6, we start with the gZ-irr, crystal 
family 'diclinic di square', which gives the DI diclinic 
di square-al crystal family and the TI diclinic di 
square oblic crystal family; the second part of this 
table is devoted to the DI and TI crystal families out 
of the monoclinic di square crystal families. 

II. Some properties of the incommensurate crystal 
families connected to the gZ-irreducibility 

We are going to explain why the MI, DI and TI 
crystal families cannot be gZ-irreducible crystal fam- 
ilies, except for two families: the gZ-irreducible crys- 
tal families of type (1, 1, ...,1), i.e. degenerate, and 
the gZ-irreducible crystal family of type 3,3 (mono- 
clinic di cubic crystal family of 6D space E6) .  We 

prove this property for the TI crystal families; the 
proof can be easily applied to the MI and DI crystal 
families. 

The vectors describing the main and satellite 
reflections of an incommensurate structure are as 
follows in reciprocal space (see Phan & Veysseyre, 
1994): 

3 

H = ha* + kb* + lc* + Z miqi* 
i=1 

qi* = ¢xia* + r i b *  + % c * ,  

where h, k, 1 and mi are integers and at least one of 
the three entries ai, fli and ~/i is irrational for each 
value of the index i. Then, we consider an additional 
space generated by three unit orthogonal vectors 
orthogonal to the physical space. So we study the 
incommensurate structures in 6D space, E6: 

a~ = a - a~d~ - a2d2 - a3d3 ,  a4 = d l ,  

a2 = b - r i d  1 - f12d2 - f13d3, a5 = d2 

a 3 = c -  "Yldl - ' y 2 d 2 -  'y3d3, a6 = d3. 

But all or some entries ai, fli, Y~ are irrational. 
Therefore, only some point operations and conse- 
quently some point groups and some crystal families 
of the space E 6 can describe these structures. Indeed, 
any vector of the crystal lattice of E 6 cannot have as 
picture any vector of this lattice. According to the 
number and the value of the irrational entires, ai, fl~ 
and y;, which are different from 0, according to their 
position in the vectors q;*, the TI crysal families are 
split up in various ways as 6, 5 + 1, ..., 3 + 3, .... We 
explain these results through four examples. 

(1) At first, we suppose that all the nine entries are 
irrational and unequal. It is easy to prove that the 
PSOs compatible with this hypothesis are: (i) the 
identity, which leaves unchanged all the vectors; (ii) 
the total homothetie of ratio ( - 1 ) ,  which changes 
each vector into its opposite. In space E 6, there only 
exists one crystal family of which the point group has 
these two PSOs: the '15-clinic' family. Now, in space 
E 6, w e  consider the gZ-irr, crystal families of type 
(1,1,1,1,1,1), i.e. degenerate. The crystal families 
belonging to this type of irreducibility cannot have 
only two PSOs, the identity and the total homothetie 
of ratio ( - 1 ) .  Therefore, they can be used for the 
description of an incommensurate structure. 

(2) We consider the so-called type no. 8 (Phan & 
Veysseyre, 1994). 

qi* = aia* + ]~i b*  (i = 1, 2, 3). 

Six entries are irrational and unequal; only one 
vector (a3) of the reciprocal lattice is not associated 
with these entries. The other five vectors depend on 
the irrational entries. The only PSOs that can act on 
these five vectors are the identity (all the vectors are 
unchanged) and the total homothetie of ratio ( - 1 )  
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Table 7. MI, DI and 7"1 crystal families and point groups from the gZ-irreducible crystal family hexagon of 2D 
space 

See caption of  Table 2. 

Order of the 24 12 12 12 12 12 6 6 6 6 6 
point groups 

Hexagon (2D) 6mm 6 3m 

Hexagonal (3D) m ± 6ram 6ram 622 6m2 3m m ± 6 6 6 3m 32 
(6/mmm) (6/m) (m .1. 3) 

Oblic hexagon 2 _1. 6ram 6ram 6,T,1 26,m,~ 2.1. 3m 2.1. 6 6 2 .I. 3 3m 3,~ 26 
MI CF (4D) 

Triclinic hexagon 1.1. 6mm 6mm 6,14,14 ~,m, 14 T .1_ 3m ~ .1_ 6 6 1.1. 3 3m 3,14 
DI CF (5D) 

Hexaclinic hexagon 14 / 6mm 6mm 6 ,1s ,15  146,m,15 14±3m 14,1,6 6 1413 3m 3,15 146 
TI CF (6D) 

3 p 

3 

3 

3 12 

3 12 

3 12 

Table 8. DI and TI crystal families and point groups from the gZ-irr, diclinic di hexagon and monoclinic di 
hexagon crystal families of 4D space 

66* = 62 * =  double rotat ion of  angles 2rr/6 in the plane (a f t )  and 2rr/6 in the plane (yS)_1_ (aft);  33* = 32*; p = number  o f  
incommensurate (I) point groups. 

Order 
Non-incommensurate (I) gZ-irr. CF diclinic di hexagon (4D) 
DI CF diclinic dihexagon-al (5D) 
TI CF diclinic dihexagon oblic (6D) 

Non-incommensurate gZ-irr. CF monoclinic di hexagon (4D) 
DI CF monoclinic di hexagon-al (5D) 
TI CF monoclinic di hexagon oblic (6D) 

24 12 12 6 
66* 

66* ±m 33* ±m 
66* ,1,2 33* ,1,2 

2,66*,2 2,33*,2 
2,66",2±m 2,66*,2 2,33",2±m 2,33",2 
2,66",2± 2 2 , 6 6 * , 2  2,33",2,1,2 2,33*,2 

6 3 p 
33* 
66* 33* 4 
66* 33* 4 

(each vector has its opposite for mapping). As in the 
previously studied case, the 'decaclinic' cell [gZ-irr. 
crystal family of type (1,1,1,1,1)] is the only crystal 
family of space E 5 having only these two PSOs. If we 
add the vector a3, we find either the crystal family 
'15-clinic' if the vector a3 is not orthogonal to the 
space generated by the other five vectors, or the 
'decaclinic-al' crystal family if the vector a3 is orthog- 
onal to the sPace generated by the other five vectors. 
This crystal family is gZ-red, of type 5 + 1. 

(3) We consider a third example with three 
irrational entries as follows: 

a l = a -  a~d~, a 4 = d l ,  

a2=b-/32d2,  as=d2, 

a3 = c -- ~3d3, a 6 = d 3  • 

The splitting of the crystal cell in space E 6 into 
three subcells belonging to three subspaces of dimen- 
sion two is obvious. If these three subspaces are not 
two-by-two orthogonal, we again find the first case. 
Therefore, we suppose that they are two-by-two 
orthogonal and we consider one of them, for 
instance the subspace generated by the vectors a, and 
an or dl. As the entry al is irrational, the only PSOs 
are the identity and the homothetie of ratio ( - 1 )  
and of dimension two. In this space E 2, we find the 
gZ-irr, crystal family of type (1,1) i.e. the oblic 
family. In space E 6, we obtain the tri-oblic family, 
which is gZ-red, of type 1,1 + 1,1 + 1,1. 

All the various cases listed by Phan & Veysseyre 
(1994) should be studied in this way. To finish with, 
we study the second exception, i.e. the gZ-irr, crystal 
family of type (3,3) or monoclinic di cubic crystal 
family of 6D space. Indeed, the cell of this family 
consists of two equal cubes belonging to two non- 
orthogonal subspaces (if the subspaces were orthogo- 
nal, the crystal family would be the hypercubic 
family, which cannot describe an incommensurate 
structure because the point-symmetry operations of a 
hypercube permute all the sides). In the case of the 
monoclinic di cubic family, one cube cannot be 
changed in the other. This case appears when the 
nine entries are as follows: 

£~1 = /32 = ')/3 = k (irrational value) 

a2 = a3 =/31 =/33 = 3'1 = ~/2 = 0. 

As a result, the incommensurate structure is 
described bythe  vectors 

al = a -  kd~, a 4 = d l ,  

a 2 = b - k d 2 ,  a5=d2, 

a 3 = c - k d 3 ,  a 6 = d 3 .  

Space E 6 splits up into two orthogonal 2D sub- 
spaces generated by (a,, a2, a3) for the first one and 
by (d,, d2, d3) for the second one. We obtain the 
monoclinic di cubic family [gZ-red. of type (3,3) if 
the vectors (ai) are unit orthogonal vectors]. 
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Table 9. TI crystal family out of the gZ-irreducible cubic crystal family of 3D space 

In the first line, we give the order of the different point groups belonging to the two crystal families considered; we start with the 
holohedry. In the second line, we list the different point groups belonging to the cubic family which is a gZ-irr, crystal family; for two 
point groups, we give two symbols: the abbreviated symbol and, in brackets, the full symbol. In the same way, in the third line we list the 
different point groups belonging to the monoclinic di cubic family which is a TI crystal family; as for the cubic family, we give two 
symbols to two point groups: the abbreviated symbol and, in brackets, the full symbol. The symbols of  the point groups of  these two 
families are similar: m becomes 2, 2 becomes 14, a simple rotation of  3D space such as 3 becomes a double rotation 33 of  6D space and 
so on. The last column gives the number of  PSGs belonging to each of  the crystal families. 

Order of the point groups 48 12 24 24 24 p 

gZ-irr. CF: cubic (3D) m3m 23 m3 432 2,3m 5 

TI CF: 2,662,2 14,33 2,662 44,33,14 442,33,2 5 
monoclinic di cubic ( 6 D ) ( z ~ 4 ,  662, ~ ) ~ ,  662) 

Table 10. Number of MI, DI and TI crystal families and point groups in 4, 5 and 6D spaces 

Number of crystal families Number of  point groups 
MI DI TI MI DI TI 

Table 2 2 3 4 4 7 10 
Table 3 1 1 2 4 6 7 
Table 4 1 1 1 3 3 4 
Table 5 1 1 1 7 7 7 
Table 6 2 2 4 4 
Table 7 1 I 1 12 12 12 
Table 8 2 2 8 8 
Table 9 1 5 

Sum 6 11 14 30 47 57 

So we can see how the WPV names (Weigel et al., 
1987) are a powerful tool especially in view of 
determining the gZ-irreducibility of the MI, DI and 
TI crystal families (CFs) as well as their types of 
decomposition, i.e: 

2 + 2 for the oblic hexagon MI CF 4D-(oblic = 
2D; hexagon = 2D). 

3 + 2 for the triclinc square DI CF 5D-(triclinic = 
3D; square = 2D). 

4 + 1 for the diclinic di square-al CF 5D. Actually, 
the cell is a right hyperprism based on the diclinic di 
square cell (4D) and al is the contraction of orthogo- 
nal plus one dimension. 

3 + 2 + 1  for the triclinic oblic-al TI CF 6D- 
(triclinic = 3D; oblic = parallelogram = 2D; al = 
1D). 

4 + 2 for the hexaclinic square TI CF 6D (hexa- 
clinic = 4D; square -- 2D). 

4 + 2 for the diclinic di square oblic TI CF 6D 
(diclinic di square = 4D; oblic = 2D). 

Concluding remarks 

This paper proves the filiation from the gZ- 
irreducible crystal families and their point groups in 
1, 2, 3 and 4D spaces to the MI, DI and TI gZ- 
reducible crystal families in 4, 5 and 6D spaces with 
the maxiclinic gZ-irr, crystal families and the TI 
monoclinic di cubic gZ-irreducible crystal family of 
the 6D space and their point groups. 

We summarize these results by: 

gZ-irr. CF 

1D 2D 3D 
I I 

' 2 
MI gZ-red. CF 
( + hexaclinic) 

4D 

4D 

I 

l 
DI gZ-red. CF 

( + decaclinic) 
5D 

~ .  Ti gZ-red. CF 
( + 15 clinic and 
mono di cubic) 

6D 

APPENDIX 

In two papers, Weigel & Veysseyre (1991) and 
Veysseyre, Weigel & Phan (1993), we give a defi- 
nition of the so-called gZ-irreducible crystal families 
and of the gZ-reducible crystal families. As we 
explain in these papers, our concept is slightly differ- 
ent from the definition given by Brown, Billow, 
Neubilser, Wondratschek & Zassenhaus (1978). 
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These authors give a mathematical definition con- 
nected to the unimodular n x n matrices of finite 
group associated to a Z class. 

Our definition is connected to the geometry and 
the splitting up of the metric tensor of a crystal cell 
and to the bases of the irreducible representations of 
the holohedry of the crystal family. For these 
reasons, the letter 'g' is the abbreviation of 'geomet- 
rical'; 'Z'  is the group of positive or negative 
integers. 

We suggested this definition: 
Let x, y, z, t, u, v, ... be the n translation operators 

corresponding to a basis of a primitive Bravais cell of 
a crystal family of the n-dimensional space E ~. This 
family is said to be 'geometrically Z-irreducible' 
(gZ-irr.) if all these operators belong to the same 
irreducible representation with integer entries of the 
character table of its holohedry. If this property is not 
verified, the crystal family is said to be 'geometrically 
Z-reducible' (gZ-red.); in this case, the metric tensor 
can be split into two or more parts or, in other 
words, the cell of the crystal family is the orthogonal 
product of two or more cells belonging to two or 
more orthogonal subspaces of space E n. Now, we 
give two simple examples: 

The rectangular family of space E 2 is a gZ- 
reducible family, the WPV symbol of the holohedry 

is m_l_ m, the construction of the cell is explained as 
the rectangular product of two unequal segments. It 
is easy to see that the two operators x and y belong 
to two different irreducible representations of the 
character table of this holohedry. 

The oblic family and the square family are gZ-irr. 
crystal families of space E 2. Indeed, the two opera- 
tors x and y belong to the same irreducible represen- 
tation of dimension 1 (which is not the identity 
representation) for the oblic family and to the same 
irreducible representation of dimension 2, for the 
square family. If we consider the metric tensor of 
these two cells, we notice that it is impossible to split 
them into two parts. 
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Abstract 
Four more examples are provided to emphasize the 
extreme difficulty in deciding, by diffraction 
methods, whether a crystal structure is centrosym- 
metric or only approximately so. In these examples, 
earlier workers described and refined structures in 
noncentrosymmetric space groups; refinements in the 
corresponding centrosymmetric space groups, based 
on the original data, lead to improved results. In one 
case, apparent violations of systematic absences seem 
to preclude the centrosymmetric description; 
however, other evidence - in particular, improved 
agreement for the very weak reflections (which are 
the most sensitive to the centrosymmetric-non- 
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centrosymmetric ambiguity) - suggest that the space- 
group violations might be spurious. In any event, the 
moral is clear: extreme caution is needed when 
attempting to derive a noncentrosymmetric descrip- 
tion of a closely centrosymmetric structure. 

Introduction 
For a number of years, I have been interested in the 
problem of attempting to decide, by means of X-ray 
diffraction alone, whether a particular crystal struc- 
ture is centrosymmetric or only approximately so. As 
has been noted often, perhaps beginning with Ermer 
& Dunitz (1970), the first small deviation from 
centrosymmetry cannot be detected by normal dif- 
fraction methods since the centrosymmetric model 
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